

综合使用说明书

Crimp Force Monitor

CFM-SOL mini

Ver 1.5

历史更新

版本	发行日	担当者姓名	变更内容
Version 1.0	2017. 10. 24	佐藤真人	
Version 1.1	2017.11.13	佐藤真人	1. 概要追加
Version 1.2	2018.12.14	佐藤真人	1.2 加密器记载变更
Version 1.3	2021. 5. 26	朱寧	公差号码 5→10 个
Version 1.4	2022. 2. 15	朱寧	更新白色壳体照片
Version 1.5	2023. 8. 16	近野敏明	U盘格式追加

目 录

1.	概要		5
	1.1. 育	が言	5
	1.2 . ∃	三机・附件配件	5
	1.3 . ∃	巨机规格	7
	1.4. I/	′O 引脚分配	7
	1.5. 🗍	丁检出的不良品范围	
	1.6. 揖	曼小对应电线	
2.	公差		
3.	使用フ	5法	
	3 .1. ∃	巨机	
	3.1.1.	启动画面	
	3.1.2.	TEACH 画面	
	3.1.3.	OPE 画面	
	3.1.4.	Error 画面	
	3.1.5.	Sensor Error 画面	
	3.1.6.	TEACH Error 画面	
	3.1.7.	公差选择画面	
	3.1.8.	参数画面	
	3.1.9.	其他标识	
	3.1.10	其他功能	
	3.2. P	C 软件(Pro-Lite)	
	3.2.1.	启动画面(主画面)	
	3.2.2.	波形显示实例	21
	3.2.3.	公差选择画面	
	3.2.4.	参数画面(Log On)	
	3.2.5	参数画面(Log Off)	27
	3.2.6.	配置画面	
	3.2.7.	工具画面	
	3.2.8.	亮度调整画面	
	3.2.9.	预压画面	
	3.2.10	自动触发设定	
	3.2.11	实时数据示例	
	3.2.12	Headroom 软件	
	3.2.13	Headroom 软件的使用方法	
	3.2.14	其他画面说明	

4.	技术	·资料	38
	4.1.	良品/不良品判定(T1/T2/T3/TD)	38
	4.2.	模具•刀口的维护	41
5.	常见	」问题	43
	5.1.	重大不良无法检出	43
	5.2.	细微不良无法检出	44
	5.3.	粗电线压着时,压着不良无法检出。	45
	5.4.	AWG30 以下的细电线的压力波形不稳定。	45
	5.5.	误判过多,生产停止。	46
	5.6.	端子压着后,无法取得压力波形	48
	5.7.	打开电源开关,CFM-SOL mini 不启动	49
	5.8.	与 PC 无法通信	49
	5.9.	发生电子干扰,压力波形异常	49
	5.10.	端子未打上的不良无法检出	49
6.	质量	住保证	50

1. 概要

1.1. 前言

本产品是在手动或者半自动压着机上使用的压力管理装置。

操作在 LCD 触摸屏幕上进行。简化了设定和操作,无需电脑仅在主机上操作就可以显示波形。详细设定可在 PC 软件中的参数设定中进行。

1.2. 主机•附件配件

正面

CFM-SOL mini 的主机正面上有触摸屏,在触摸屏上可进行所有操作。 除底面的电源外没有其他按钮。

背面有两个安装支架用的内螺纹(M5)。

底面

FG 接口用来连接 AC 电源插座上的接地端子,或压着机及工厂内准备好的接地端子。 CFM-SOL mini 壳体接地,可以减少电子信号干扰。

相关附件配件

我司提供附件	客户准备附件
CFM-SOL mini 主机	PC 软件(可从弊司官网下载)
PSS 传感器	综合使用说明书、设置专用说明书(可从弊司官网下
	载)
BNC 电线	PC(请客户自行准备)
I/O 电线	USB-AB 电线(请客户自行准备)
AC 电源适配器	U盘(请客户自行准备)
加密器(选配)	
安装支架(选配)	
简易使用说明书	

1.3. 主机规格

主机尺寸	W 137mm x H 84mm x D 50mm
模拟输入	1~100Hz 响应
	0~1000mV 信号幅度
可用传感器	FTW 系列
	PSS 系列
	FTC 系列
USB 通信	1) PC 通信用(USB2.0)
	2) FAT32 格式 U 盘 (最大支持 32GB)
电源	Mean Well 公司制 GST25U24-P1J
	(输入 85~264V、输出 24V・1.04A)
	不支持其他的电源式样
使用温度	0~40℃ 湿度 90%以下。
	非结露状态下。
环保特性	满足 RoHS

1.4. I/O 引脚分配

PIN No.	记号		配线颜色
1	电源	24V (输出)	橙•黑点 1
2	TRIGGER	外部触发信号输入	橙•红点1
3	RESET	外部重置输入	黄•黑点 1
4	TEACH	外部教示输入	黄·红点1
5	STOP	STOP 信号输出(N.C)	绿·黑点1
6	STOP	STOP 信号输出(COM)	绿•红点1
7	STOP	STOP 信号输出(N.O)	灰・黑点 1
8	EJECT	排出(OK)信号输出	灰·红点1
9	GND	GND	白•黑点1

上述为继电器在主机电源不通电情况下的 I/0 引脚分配。

1.5. 可检出的不良品范围

下面对 CFM-SOL mini 可检出的不良品、不可检出的不良品作出说明。 下记关于可检出的不良相关,以压着机•模具·刀口的状态良好为前提。

端子压着区域示意图:

深打,芯线压脚与绝缘皮咬合,施加在芯线压脚上的压力总量发生变化。压力波形出现变化,CFM 可检出该不良。

·浅打(芯线压脚内的芯线深度减少的情况)

浅打实例(可检出的情况)

浅打,芯线的前端在芯线压脚内的情况下,芯线压脚内的芯线的深度减少,施加在芯线压脚上的压力减少。压力波形出现变化,CFM 可检出该不良。

难以检出的不良

·深打(芯线压脚与绝缘皮未咬合的情况)

深打实例(难以检出的情况)

与正常状态相比深打,但芯线压脚与绝缘皮未咬合的情况下,施加 在芯线压脚上的压力总量发生未发生变化,压力波形上很难反映出 此差异。

·深打(绝缘皮在喇叭口下方,但未与芯线压脚咬合的情况)

与正常状态相比深打,但绝缘皮压在喇叭口下方的情况下,看上去像是容易检出的深打不良。但是绝缘皮未到达芯线压脚下时,绝缘皮与芯线压脚未咬合。施加在芯线压脚上的压力总量几乎无变化,压力波形上很难反映出此差异。这与可检出的不良容易混淆,需要特别注意。

·浅打(芯线压脚内的芯线总量未变化的情况)

浅打实例(难以检出的情况)

与正常状态相比浅打,芯线压脚部和端子嵌合部之间未出现芯线, 看上去像是容易检出的浅打不良。但是如图所示,芯线压脚内的芯 线总量不变,压力波形上很难反映出此差异。这与可检出的不良容 易混淆,需要特别注意。

·绝缘皮压脚变形

与芯线压脚不同,绝缘皮压脚上的压力较小,即便压脚出现变形,压力波形上也没 有较大的差异发生。

•芯线漏出后压着

芯线在压脚外漏出后被叠加在端子上压着的不良,施加在芯线压脚上的压力总量未 发生大的变化,压力波形也不出现变化。

•端子嵌合部的不良

嵌合部不是产生压力的区域,因此嵌合部变形,压力波形也不出现变化。

以下,记载了 0.5 mm²·7 根芯线的电线上,良品和不良品的压着波形。

芯线2根断裂

1.6. 最小对应电线

本产品可对应的最小电线是 AWG28。

2. 公差

CFM-SOL mini 的公差有 5 个号码。1 是最小公差, 5 是最大公差。各判定区域的判定结果 超过公差%的话, CFM-SOL mini 做出不良品判定。

公差表(初始值)

	T1-	T1+	Т2-	T2+	Т3-	T3+	TD
1	99.9	25.0	5.0	10.0	2.0	4.0	25.0
2	99.9	30.0	7.0	12.0	3.0	5.0	30.0
3	99.9	35.0	9.0	14.0	4.0	6.0	30.0
4	99.9	40.0	11.0	16.0	5.0	7.0	40.0
5	99.9	42.0	13.0	18.0	6.0	8.0	40.0
6	99.9	45.0	15.0	20.0	7.0	9.0	45.0
7	99.9	47.0	17.0	22.0	8.0	10.0	45.0
8	99.9	50.0	19.0	24.0	9.0	11.0	50.0
9	99.9	52.0	21.0	26.0	10.0	12.0	55.0
10	OFF	OFF	OFF	OFF	20.0	22.0	OFF

公差 5 时, T1、T2、TD 变为 OFF, 判定仅在 T3 进行。仅基于下死点的压力波形的波峰 附近检查,适用于只检出重大不良的生产方法。

公差表中的具体数值可通过主机上长按公差画面 5 秒或者 PC 软件更改。请参照「3.2.4.参数画面(Log On)」。通过更改参数画面中的公差号码以更改具体的%数值。数值设为空白,则为关闭此项检查。

各公差号码的定位。

1 是最严格的公差。要检测出 1/7 根芯线,推荐此公差,但可能误判会增加。

误判:(即便压着出良品,也会被判断为不良品)

2是相比标准稍严格的公差,可判定细小的不良。

3 是标准公差。初始值设定的就是此公差。可判定细小的不良,也不会有很多误判,

是最平衡的公差。大致可检出 2/7 根芯线断裂。

4 是相比标准稍宽松的公差。可检出重大不良,减少误判。

5 是最宽松的公差,且 T1、T2、TD 的判定都为 OFF。仅 T3 区域判定,监视压力波形在 下死点附近的压力峰值,可检出重大不良,减少误判。

3. 使用方法

- 3.1. 主机
- 3.1.1. 启动画面

启动时出现。

3 秒后自动切换为 TEACH 画面。

3.1.2. TEACH 画面 TEACH 中的画面。

教示完成或取消,进入 OPE 画面。

?	帮助按钮。点击后显示启动画面(带有关闭按钮)。 在峰值异常报警出现时,此图标将被隐藏。
3	显示公差号码。 点击后显示公差选择画面。
REC	TEACH 模式按钮,进入取得基准波形的模式。TEACH 模式是压着 2 根(初始值)良品样品,通过计算平均值来取得基准波形。良品样品个数可在 2 根到 5 根之间更改。详细请参照「3.2.4.参数画面(Log On)」。用基准波形与生产时的每次压力波形相比较,差异超过设定的公差时则判定为不良品。
OPE	OPE(生产模式)按钮。点击后取消 TEACH 模式进入 OPE 画面,即进入生产模式。此时基准波形维持在上一次成功取得的基准波形。OPE 模式下, CFM-SOL mini 将每次压力波形与 TEACH 模式中取得的基准波形相比较。差异超过设定的公差时则判定为不良品。

波形显示:	实测的波形用黄色线表示。			
	适应教示的第一根的波形高度,将自动配置 Y 轴方向的扩大率。			
	该自动配置的扩大率将一直持续到下一次教示。			
右上显示:	TEACH: "/" 左侧显示 TEACH 中当前取得的样品数量,右侧			
(简易)		显示的是 TEACH 样品的设定数量。(2 根~5 根)		
	Peak:	峰值电压值以 mV 表示。		
	Meas:	波形的测量时间以 mSec 表示。测定时间是指波形显示		
		画面的左端到右端。由 CFM-SOL mini 自动决定。		
右上显示:	T1:	显示 T1 判定值。		
(详细)		NG 时以红字显示。		
简易显示和	T2: 显示 T2 判定值。			
详细显示可	NG 时以红字显示。			
通过点击显	T3:	T3: 显示 T3 判定值。		
示屏幕切	NG 时以红字显示。			
换。	TD:	显示 TD 判定值。		
		NG 时以红字显示。		
	Shift	表示基准补偿值。Shift 是显示根据基准补偿而更新的		
		基准波形,与 TEACH 时的最初波形有多少变化的数		
		值。Shift 和基准补偿的详细设定相关,请参照「3.2.4.参		
		数设置」。		

3.1.3. OPE 画面 OPE 中的画面。

REC	TEACH 按钮。点击后进入 TEACH 画面。
	OPE 按钮。已进入 OPE 模式时该按钮无效。

波形显示:	取得的波形用黄色线表示。		
	判定时使用的基准波形用红色线表示。		
右上显示:	良品	显示进入 OPE 后良品的判定次数。	
(简易)	不良品	显示进入 OPE 后不良品的判定次数。	
右上显示:	峰值:	峰值电压值以 mV 表示。	
(详细) 简易显示和	测量:	波形的测量时间以 mSec 表示。	
详细显示可	T1:	T1 显示判定值。	
通过点击屏		NG 时以红字显示。	
幕上的显示			
区域进行切	T2:	T2 显示判定值。	
换。		NG 时以红字显示。	
~ .	T3:	T3显示判定值。	
		NG 时以红字显示。	
	TD:	TD 显示判定值。	
		NG 时以红字显示。	
	偏移	表示基准补偿值。	

3.1.4. Error 画面

判定为不良品时的画面。

右下角的×按钮点击后解除 Error。

3.1.5. Sensor Error 画面

传感器未连接时发生的 Error。 请确认传感器的连接后解除 Error。

3.1.6. TEACH Error 画面

TEACH 模式中,NG 判定发生 3 次时,显示下记的画面。 右下角的×按钮点击后回到 TEACH 画面。

3.1.7. 公差选择画面

选择公差的画面。

蓝色柱状图是最近 30 根的判定%。以中间横线为分界,判定值为正数在横线上方显示,判定值为负则在横线下方显示。

公差的变更:请在公差界面长按公差号码,通过右侧上下箭头变更公差。

最近 30 根 T1~TD 判定值的趋势通过柱状图显示,可辅助选择合适的公差。当前公 差的横线也显示出来,选择哪个公差号码可稳定压着(不误判定)一目了然。最大 30 根,每次 TEACH 后重置。 柱状图的左边,TEACH 以后判定值的最大值、最小值用红色表示。 红色数字是判定值的最大•最小值(左侧上下)。TD 只显示最大值。 灰色数字是公差值的数字。(右侧上下) 最近 30 根判定的柱状图用蓝色表示。 选择的公差号码对应的公差值,在柱状图处以灰色线横线表示。 判定 OFF 一栏表示柱状图「OFF」。

^{3.1.8.} 参数画面

在 PC 端打开参数画面后显示的画面。 通过主机上的操作无法进入此画面。 PC 端关闭参数画面,此画面将自动关闭。

3.1.9. 其他标识

波形异常标识。 波形峰值极大变动,良品的偏差率%(「请参照 3.2.13. Headroom 软件」)在 1%以上时,在原来「?」标识的地方显示波形异常标识,催促进行压着机和模具的维护。点击时的动作与「?」标识相同。波形峰值
稳定后,此标识也会恢复成「?」标识。
U 盘标识。 当主机中插入 U 盘时×按钮位置处显示此标识。U 盘在读写时不可拔 出,可通过长按此图标,待图标消失后方可安全移除 U 盘。

3.1.10. 其他功能

主机 USB 接口中插入U盘期间,压着数据将自动保存到U盘的文件夹中。 在U盘的根文件夹下,自动生成名为YYYYMMDDHHMMSS.dat的文件。 YYYYMMDDHHMMSS 是指识别到U盘的年月日时分秒。 主机电源打开和关闭时,新文件生成,数据保存在新文件中。 主机电源未打开和关闭时插拔U盘,将不会生成新文件,而是在老文件中追加保存。 数据保存相关,1GB 容量大约可保存 110万份数据。 (文件的大小与保存的数据数量成比例。)

3.2. PC 软件(Pro-Lite)

专用 PC 软件 Pro-Lite 的功能相关说明。

3.2.1. 启动画面(主画面)

Pro-Lite Ver1.0.3.1 Offline		_	- U X
	Pro-Lite		? C
	基准波形 检查波形	总计个数 良品	0/2
		不良品	
		峰值	0.000mV
		测量时间	0. 000ms
		T1	0.0%
		T2	0.0% / 0.0%
			0.0% / 0.0%
		Т3	0.0%
		ТЛ	0.0% / 0.0%
			0. 0%
		偏移	0.0%
		日期/时	0
		0000/00	/00 00:00:00

标识说明

	与主机通信开始。 在与主机通信时点击,则通信结束。
	主机进入 OPE 模式。
	主机进入 TEACH 模式。
(\mathbf{X})	主机发生 Error 时点击,解除 Error。
K	打开公差选择画面。
	打开参数画面。 参数画面中,可更改主机中记录的各种设定值。
PC	打开配置画面。 配置画面中,可更改 PC 软件的动作设定。

	打开工具画面。 可保存和读取文件。
C	关闭 Pro-Lite。

3.2.2. 波形显示实例

※1 与主机显示相同,显示各种数值。

※2显示波形的取得时间。

取得时间是从主机的时钟中取得。

主机的时钟与实际时间有误差时,可通过 PC 软件修正。

※3 取得的波形和基准波形的差通过图表显示。

3.2.3. 公差选择画面

🕞 公差设定画面				_	
	12	3	4 5		
T1	T2		Т3	TD	
0.0% 25.0	0.0%	10.0% 0.0%	4.0%	0.0%	25.0%
0.0% 99.5	NX 0.0X	5.0% 0.0%	2.0%		
1000		0.00	2.0%		
				OPE	TEACH
					\sim

操作方法、显示内容都与主机的公差选择画面相同。

3.2.4. 参数画面(Log On)

▶ 参数画面		- 🗆 X
Pro	-Mini	0К 关闭
从CFM-Mini主机 读取的参数	区间编集 调整亮度 预压	自动触发设 定 Headroom
测量模式 短 最长测量时间100mSec 长 最长测量时间500mSec	公差表 公差号码 T1 (-) T1 (+) T2 (-) T3 (-) T3 1 99.9 25.0 5.0 10.0 2.0	(+) TD 4.0 25.0
触发 自动 触发等级 100 mV 下降沿 上升沿 触发延时 0 √ mSec	2 99.9 30.0 7.0 12.0 3.0 3 99.9 35.0 9.0 14.0 3.0 4 99.9 40.0 11.0 16.0 4.0 5 99.0 12.0 5.0 5.0	5.0 30.0 6.0 30.0 7.0 40.0
	5 97.9 42.0 13.0 18.0 5.0 6 99.9 45.0 15.0 20.0 6.0 7 99.9 47.0 17.0 22.0 7.0 1 8 99.9 50.0 19.0 24.0 8.0 1	8.0 40.0 9.0 45.0 初始值 1.0 50.0
对准 右 at 40 % 左 at 70 % 关	9 99.9 52.0 21.0 26.0 10.0 1 10 OFF OFF OFF 0FF 20.0 2 加密結保护 2	2.0 55.0 (2.0 OFF
基准补偿 开 复原 3 分 关	教示 开 关 公差 开 关 触发 开 关 密码 9999	复原开关
区域 T1 开始 5 % T2 开始 30 % T3 开始 70 % T3 结束 90 %	输出 <th>0 kg/1000mV</th>	0 kg/1000mV
教示 取样条数 2	日期和时间 排出信号 日期时间与计算机同步	下载

显示/更改 CFM-SOL MINI 主机中保存的参数。

按钮说明

ОК	将设定传送至主机后画面关闭。
关闭	将设定不发送到主机且关闭画面。
调整亮度	打开亮度画面。
	调整主机液晶显示器的亮度。
预压	打开预压画面。预压是指预加压的意思。
	使用底座式 FTW 系列传感器时,给底座预加压时使用。
	详细请参照「CFM-SOL mini 设置专用说明书」。
自动触发设定	打开自动触发设定画面。
	可在自动触发信号无法工作时调查原因。请参照 P24 的「触
	发」。
Headroom	打开 Headroom 软件。
	可确认现在生产中的产品,CFM 以怎样的精度检查,及稳
	定地运用。请参照「3.2.12 Headroom 软件」
下载	将主机的所有设定值保存在 PC 的一个文件中。
上载	将 PC 保存的参数文件的内容发送到主机中。

参数说明

测量模式	可更改波形的最大取得时间。
	选择「短」时,可取得最大 100mSec 的波形。默认初始值是
	「短」。
	选择「长」时,可取得最大 500mSec 的波形。使用在油压机
	等测量时间长的生产上。

触发	可选择开始取得波形触发信号的类型。
	选择「自动」时,通过监控负荷的变化,CFM-SOL mini 自动
	取得波形。初始值选择的是「自动」,通常使用此选项。
	选择「下降沿」「上升沿」时,通过监控外部触发 SW 的状态,
	状态变化时开始取得波形。
	选择「下降沿」时,从状态的下降边缘开始取得波形。
	选择「上升沿」时,从状态的上升边缘开始取得波形。
	「自动」在无法正常工作的特殊情况下,使用「上升沿」「下降
	沿」。
触发水准	选择自动触发时该设定有效。
	当荷重超过设定的 mV 时,开始取得波形。初始设定值是
	100mV, 可在 20mV-1000mV 范围内变更。
触发延时	+ 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一
	压着机的冲头从开始下降到实际压着在时间上有偏差,希
	望从上升边界/下降边界开始推迟一定时间后取得波形时.
	可以指定推迟的时间 mSec。
测量时间	自动计算。无法手动设定。
(公王611-1	波形的取得时间(波形从开始到结束的时间),波形的形
	状•大小等自动决定。「短」时最大 100mSec. 「长」时最大
	500mSec.
对准	压着判定时,为与基准波形进行比较,在取得的波形和基
11 IL	准波形的左或右位置设定基准占以使得波形重叠并对比
	当压着时机上有误差时,基准波形的左右位置不调整将于
	学进行正确的判定 初始值是方 40% 伺服压差机波形不稳
	完'是到较多时一设置为 左 70% 悠得到稳定的判定
其准补偿	可设完压差判完的基准波形数据存生产过程由是否需要更
全正百云	新 医姜和机身在生产结缔过程由发热 机身细微扩张劲
	庙 王力 告生 本 孙 其 准 私 쓴 ON 时 关 昭 生 产 由 的 最 新 粉
	的其從波形古列下一次 TEACH 为止一古天亦一一般左开
	「侍的埜佃奴形旦到下」(入TEAOF 为止。且小文。 放仁生 立时其准认供识罢方 ON 出去
) 时
 友尿	至低价伝 UN 时有效。 有互助时间以八为单位比定
	友尿的时间以刀乃半位相足。 坐工差扣值止工作计利用户仍完的时间时 其准计供措计
	□ □压有机疗止⊥ 行处到用厂 仅 上 的 的 问 的 , 坐 任 邻 伝 楔 八 下 再 车 的 其 准 油 平 有 百 到 是 初 如 二 叶 的 业 大
	「
	里新开始生产时基准补偿生效,基准波形冉伏进入史新状
1	一念。

区域	设定判定区域的划分
区场	以尼力尼巴纳的初方。
	T1 开始 设定 T1 区域的开始点的%。 从波峰往左搜索,以波峰高度的指定%的点划竖线为 T1 的 开始位置。(默认 5%,即当波形在相对波峰 5%时 T1 开始)
	T2 开始(T1 结束) 设定 T2 区域的开始点的%。 从波峰往左搜索,以波峰高度的指定%的点划竖线为 T2 的 开始位置。T2 区域的开始位置即 T1 区域的结束位置。
	T3 开始(T2 结束) 设定 T3 区域的开始点的%。 从波峰往左搜索,以波峰高度的指定%的点划竖线为 T3 的 开始位置。T3 区域的开始位置即 T2 区域的结束位置。
	T3 结束 设定 T3 区域的结束点的%。 从波峰往右搜索以波峰高度的指定%的点划竖线为 T3 的结 束位置。 详细请参照「4.1. 良品/不良品判定(T1/T2/T3/TD))
教示	设定 TEACH 中取得的波形数量。 在设定的数量压着后,教示自动完成,进入生产模式。
公差表	设定公差 1~公差 5 号的各公差值(T1~T3 的各±公差值、 TD 的+公差值)。 设定为O时则显示 OFF,此项目不判定。 详细请参照「2.公差」。

加密	可设定在主机上若不插入加密器就无法操作的项目。适用项 目包括教示、公差、复位以及触发。一旦设定后只有管理者 在主机上插入加密器时才可以解锁并使用下述功能,其他 人员无法使用。
	教示 设定为 ON 时,加密器不插入主机,在主机上将无法进行教 示。
	公差 设定为 ON 时,加密器不插入主机,在主机上将无法进行公 差的更改。
	复位 设定为 ON 时,加密器不插入主机,在主机上将无法进行 Error 的解除。
输出	设定输出信号的输出条件。100mSec的脉冲输出。 在每次压着结束后向压着机输出信号。
	良品 主机判定为良品时输出信号。
	不良品
	主机判定为不良品时输出信号。
日期和时间	点击「日期时间与计算机同步」按钮,可将 PC 上的日期时 刻发送至主机上。

3.2.5 参数画面(Log Off)

🕞 参数画面		- 🗆 X
Pro	-Mini	关闭
从文件 读取的参数		
测量模式	公差表	
短 最长测量时间100mSec 长 最长测量时间500mSec	公差号码 T1(-) T1(+) T2(-) T2(+) T3(-) T3(+)	TD
	1 99.9 25.0 5.0 10.0 2.0 4.0 25	i. 0
触发	2 99.9 30.0 7.0 12.0 3.0 5.0 30). 0
自动 触发等级 下路沿 上升沿	3 99.9 35.0 9.0 14.0 3.0 6.0 30). 0
100 mV D mSec	4 99.9 40.0 11.0 16.0 4.0 7.0 40). 0
	5 99.9 42.0 13.0 18.0 5.0 8.0 40	0. 0
	6 99.9 45.0 15.0 20.0 6.0 9.0 45	5.0 初始值
	7 99.9 47.0 17.0 22.0 7.0 10.0 45	5.0
3+V#:	8 99.9 50.0 19.0 24.0 8.0 11.0 50). 0
	9 99.9 52.0 21.0 26.0 10.0 12.0 55	5. 0
右 at 40 % 左 at 70 % 关	10 OFF OFF OFF 20.0 22.0 0)FF
17 VF-11.04	加密锁保护	
◆/4 作/☆	教示 开 关 公差 开 关 复原	开 关
开 复原 <u>3</u> 分 关	触发 开 关 密码	
	输出	
T1 开始 S % T2 开始 30 % T3 开始 70 % T3 结束 90 %	良品信号 不良信号 校准	0 kg/1000mV
教示		
取样条数 2		
		保存

显示/更改 PC 中保存的参数。

按钮说明

保存	将画面的设定内容保存在 PC 的文档中。
读取	显示 PC 文档中保存的设定内容。

※其他项目与 Log On 时相同。

3.2.6. 配置画面

▶ 配置画面					×
Headroom软件的	路径				
c:\Soltec\Hea	adroom\He	adroom. ex	e		
语言					
简体中文				\sim	
	ОК	取消			

设定 PC 软件的工作条件。

Headroom 软件的路径选择 在 Headroom 软件的安装文件夹中 径。	
	通常此路径不需要更改。
语言	选择 Pro-Lite 软件的显示语言。
	简体中文、繁体中文,英語,日语可选
ОК	使设定生效并关闭画面。
取消	放弃设定并关闭画面。

3.2.7. 工具画面

波形数据保存	在 Pro-Lite 保存收集到的波形数据文件。
波形数据读取	PC 上保存的波形数据在其他窗口打开。
退出	关闭工具画面

3.2.8. 亮度调整画面

通过移动光标栏调整主机的 LCD 亮度。

关闭	关闭画面。

|--|

🕞 预压画面				×
	预压		0.2%	
		ок		

给传感器预加压时使用。

打开画面后进行加压,当显示值与推荐值一致时,停止紧固螺栓。

传感器不同, 推荐值也各不相同。

另外, PSS 传感器不需要预加压。

OK	关闭画面

3.2.10. 自动触发设定

🕞 自动触发确认画面		×
Auto Trigger	Pro-Lite	ОК 取消
		时间
		189
		高清晰
		Ŧ
		获取波形
		触发等级
		80 mV

自动触发无法顺利工作时可用来调查原因。

按钮说明

ОК	确认自动触发设定并返回参数设定画面。
取消	取消自动触发设定并返回参数设定画面。
获取波形	按设定的秒数记录并显示传感器的实时数据。

设定项目

时间	设定数据的取得时间。 可选择设定为1秒/5秒。
触发等级	设定显示传感器实时数据的触发水准。 点击 OK 关闭画面,设定值将显示在参数画面中。

3.2.11. 实时数据示例

举例①外部触发时

请确认淡蓝色线的位置和黄色波形的位置。

两者距离较大时,需要设置合适的触发延时。

设定的时间(秒)会充满画面宽幅,请参考此在参数画面设置合适的触发延时。 触发延时请在参数画面设置。

举例② 自动触发时

压着时黄线波峰不超过白色细线的话,自动触发功能不工作,无法取得压力波形。 请一边参考画面显示,一边设置合适的触发水准。

举例③ 共通

压着时黄色线不变化,可能是传感器不良或者设置错误。 请确认传感器的设置状态,或者更换传感器。 黄色线变化过小时,传感器的灵敏度可能不适合该设备。 请更换为灵敏度更高的传感器。

3.2.12. Headroom 软件

电线和端子的组合、压着机·模具的状态不同,CFM 的判定精度也会发生变化。 显示 CFM 可以以怎样的精度来判定的指标有两个。 第1个是 Headroom, 第2个是良品的偏差%。

Headroom

「良品压着時的波峰负荷」与「无芯线压着时的波峰负荷」的差值,将良品波峰看做作 100%的示意图。(下图)

淡蓝色部分的大小, 良品峰值作为 100%来显示的就是 Headroom。 左图是 70%左右的状态。 当这个数值达到 35%以上是 CFM 可以稳定工作的条件。

良品偏差**%**

试压着 30 根左右的良品,波峰的标准偏差/波峰平均值的百分比。 偏差百分比在1以下是 CFM 可以稳定工作的条件。

通过这三个指标,在画面上显示的容易理解的产品就是 Headroom 软件。

3.2.13. Headroom 软件的使用方法

A. 试压着

打开画面,试压着良品 30 根,仅端子压着(无芯线)10 根。试压着的峰值以柱 状图显示,波形也同时显示。

B. 阈值设定

请操作鼠标让红色横线在良品的柱状图和无芯线的柱状图中间通过。 如下图所示,比红线高的峰值用蓝色,比红线低的峰值用红色表示。 请确认良品峰值的柱状图全部为蓝色,无芯线峰值的柱状图全部为红色。 这样,Headroom的确认的准备工作完成。

C. 判定稳定性的确认

良品 30 根的偏差%为Y坐标、Headroom为X坐标,下图中以星标标注。 若此标识在绿色「可稳定检出」区域内, CFM的不良检出可稳定进行。(下图) 若此标识在红色「难稳定检出」区域内, CFM的不良检出无法稳定进行的可 能性较高。

在此情况下,请实施模具的维护等措施,让标识出现在绿色区域内。 实施维护仍无法改善时,可能 CFM 不适合该电线和端子的组合。 此时,请将可检出不良规定在重大不良(无芯线、无剥皮、无端子等),增大公 差,使设备不会对良品做出误判。

※浅打、深打等不良有必要通过目视检查。

3.2.14. 其他画面说明

按钮说明

Language	选择画面中显示的语言。
Help	显示软件版本。
BACK	关闭软件。
Clear	清除画面中的信息。
Report	打印画面中的信息。

设定项目·显示项目

检出目标	希望检出1根/7根断裂请选择1。
Inspection target of	不过,可稳定检出区域会变小。
defects	检出目标的芯线断裂数越多,可稳定检出区域越大。
芯线总数	芯线总数7根时选择7。
Total Strands count	芯线总数 19 根时选择 19。
	与7相比,19的可稳定检出区域小。
良品/不良品阈值	峰值柱状图的红色横线的位置。
Normal crimping/	更改设定的数值可移动横线的位置。
Terminal only crimping	用鼠标拖动横线也可以移动横线的位置。
threshold	
良品压着数	波峰比良品/不良品阈值高的波形为良品,良品压着数表
Normal crimping count	示良品的数量。

无芯线压着数	波峰比良品/不良品阈值低的波形为无芯线压着品,无芯
Terminal only crimping	线压着数表示无芯线压着的数量。
count	
良品平均(波峰值)	良品波形波峰值的平均值。
Normal crimping (Peak	
value)	
无芯线平均(波峰	无芯线压着波形波峰值的平均值。
值)Terminal only	
crimping(Peak value)	
HeadRoom	从良品数据和无芯线数据得出的 Headroom 数值。
良品偏移%	从良品数据得出的波峰偏移%。
Dispersion	
备注	打印报告时,可输入希望在报告上留下的笔记。

4. 技术资料

本项记载的是对上述各功能的进一步说明、维护方法、程序变更方法等技术资料。

4.1. 良品/不良品判定(T1/T2/T3/TD)

压力波形是读取后划分成 T1•T2•T3 这三个区域,并比较各自的公差,从而判定良品/ 不良品。

压力波形的划分

各判定区域按照下面的规则决定。

- 基准波形的波峰为100%,波峰左边以首个达到波峰高度5%的点划竖线为T1开始位置。
- ② 与 T1 开始位置相同原理, 波峰高度 30%的点划竖线为 T2 开始位置。
- ③ 与 T1 开始位置相同原理,波峰高度 90%的点划竖线为 T3 开始位置。
- ④ 波峰右侧,波峰高度 90%的点划竖线为 T3 结束位置。

上述压力波形的划分,在教示模式产生基准波形的同时,各区域位置也得到确定,直 至下一次教示该区域位置一直不变。

T1 开始、T2 开始、T3 开始、T3 结束这四个点可更改,可设定为波峰的OO%。 (请参照「3.2.4. 参数画面(Log On)」)。

T1 区域(绿色部分)

T1 区域是端子压着的开始阶段。端子的芯线压脚接触到夹具,压脚向下压,压力增大。 压力增大时就产生了压力波形。

T2 区域(黄色部分)

T2区域是端子压着的中途阶段。端子的芯线压脚接触到夹具,压脚向下压,芯线被强力挤压。

T3 区域是端子压着的最后阶段以及下死点,表示从下死点开始回到压着机原点的过程。

T1·T2·T3 各区域和对应基准波形的相差的绝对值的和。(虚线为基准波形)

上记 T1 相差(虚线到下方绿色 T1 的空白部分)、T2 相差(虚线到下方黄色 T2 的空白部分)、T3 相差(虚线上方蓝色部分)的绝对值相加就是 TD。

T1·T2·T3 所有区域都有相差产生,各自不超过公差就不会被判定为不良品,TD 就是为了检出这样的不良品。计算公式如下:

TD = |T1| + |T2| + |T3|

4.2. 模具•刀口的维护

CFM-SOL mini 的作用是取得波形并对是**良品**/**不良品**进行判定。因此,压力自身不稳定的话,无法进行正确的判定。下面展示的是典型的日常检查工作。如严格遵守则能提高检查精度,大大减少对良品的误判。对象是压着机、模具、材料(端子、线材)等。

① 端子和线材的传送位置

压着时若压力大小偏差较大,则压力波形的偏差同时增大。 这将会导致误判(良品压着被视为不良品压着)增加。为了防止误判只好扩大公差,从而导致真正的不良无法被检测出,陷入恶性循环。因此,需严格执行日常维护,机械和模具保持清洁,材料保持稳定状态很有必要。做到上述可使 CFM-SOL mini 的效果更加有效发挥。

端子传送位置

线材笔直置于中央

 良品
 不良品

端子连接处的切刀较钝会使得端子容易 偏转,上图不良品横断面那样压脚下压 过深。外观和高度即使没有问题, CFM-SOL mini 也会将其判定为不良品。 端子和电线的位置不正确的 话,会导致端子偏转,喇叭口 消失,压脚过深等不良状况。 对测量数据产生较大影响。

小端子压着时,与下刀模接触不 稳定等也会容易造成喇叭口问 题。单侧喇叭口缺失,会造成大 负荷量减少,从而导致不良判 定。

2 底座

使用 PSS 传感器测得压着机壳体的应变,或者在底座/冲头安装传感器,无论在哪里 安装传感器,底座的维护都非常重要。

模具须紧紧固定,否则 压力不稳定。压力波形 每次变动较大,机械部 品的机构渐渐产生偏 差,压力也会产生变 化,基准补偿值变大。确 定底座的表明平整,紧 紧固定,挡板无晃动等 十分重要。

紧锁固定 底座表面平整度 挡板位置

左图中的其他注意点, 随着压着机冲头的下死 点变化,压力波形的偏 差也会产生。

5. 常见问题

关于 CFM-SOL mini 使用中可能会遇到的各种状况,我司整理了几个常见问题。

5.1. 重大不良无法检出

空端子压着(无电线)、不剥皮压着、端子双重压着等重大不良,CFM-SOL mini 是必定可以检出的。我司设计 CFM-SOL mini 时考虑到即便是最宽松的公差号码 5 号也完全可以检出。无法检出时,可能是压力波形无法正确获取。可能的原因请参考下列:

原因 1: 传感器未正确安装, 传感器灵敏度不高。 请参考「CFM-SOL mini 设置专用说明书」, 确认 PSS 传感器是否正确安装。另外, 使用 底座式的 FTW 传感器时, 请确认底座上是否能够准确预压过。

原因2:自动触发状态的波形获取设置不正确,无法看见波形。

自动触发状态的波形触发水准设置不正确,可能是将**圧力**波形之前发生的机械干扰当 作是压力波形而导致误识别。

触发水准过低,在实际的压力波形之前识别到机械干扰的波形。机械干扰的波形与实际 波形间隔在 10mSec 以上时,将会采用最先检出的强干扰波形。请在主机或 PC 软件上 调高触发水准到合适的数值。

原因 3: T1/T2/T3 的各判定区域位置不正确,无法正确判定。 如下图所示,判定区域的区分线的位置不正确的情况下,无法正确判定。初始值 T1 开 始:5%、T2 开始:30%、T3 开始:70%、T3 结束:90%。请打开 PC 软件,参考「3.2.4.参数画 面(Log On)」进行修正。另外,判定区域的详细信息,请参考「4.1.良品/不良品判定 (T1/T2/T3/TD)」。

确认了上述原因 1、2、3 仍然无法检出重大不良的情况下,请将公差值恢复到初始值, (请参考「2.公差」)再一次进行教示。

5.2. 细微不良无法检出

芯线1根断裂,轻微深打等不良的检出,受端子芯线的组合、压着机与模具的状态等 影响。虽然将公差减小可以检出诸多不良,但同时误判也会增加。请制作出想检出的 不良品样品,调整公差使其可以被检出,再测试是否可以接受此公差引起的误判。

5.3. 粗电线压着时,压着不良无法检出。

压着 HV 和 EV 用的粗电线时,由于端子的壁厚较厚,占据了压力波形的大部分。因此端子以外部分的原因引起的芯线外漏,深打(树脂咬合)等不良品的压力波形几乎不发生变化,无法被判定为不良品。

适合 CFM-SOL mini 运用的 Headroom

5.4. AWG30 以下的细电线的压力波形不稳定。 CFM-SOL mini 可稳定运用的最细电线是 AWG28。比 AWG28 细的电线相关,端子和电线的组合、模具的状态等会影响压力波形的稳定性。

5.5. 误判过多,生产停止。

误判过多会导致经常发生停线,停线时间增加则造成生产效率过低。不仅如此,为防止 误判需增大公差,又导致细微不良无法被检出,造成不良流出。各种原因互相关联, 可能的原因有如下几点:

原因1:压着机刚度降低,或者基座不稳定,机器机身每次压着的应变不同,压力波 形也都不相同。基座不稳定发生摇晃,或者压着机的刚性降低的情况下,压着机压着时 自身也会发生应变。

PSS 传感器是检出压着机形变的传感器,压着机自身不稳定的情况下,请使用底座式 FTW 系列传感器。详细请参照「CFM-SOL mini设置专用说明书」。

原因2:模具调整不足或刀模磨损,压力波形每次不相同。

根据模具的状态、刀模的磨损以及端子和电线的传送位置不同,压力波形也每次不相同,引起误判。详细对策请参考「4.2. 模具·刀口的维护相关」。

原因 3:基准补偿控制设置为 OFF。

压着机的温度上升是压力变化的主要原因,适应压力变化的基准补偿控制设置为 OFF 时,持续生产的过程中,基准波形与实际压力波形的差别变大,误判造成不良判定。 打开基准补偿控制(ON)相关,请参照「3.2.4.参数画面(Log On)」。

原因4:波峰对准设定错误

使用自动触发的状态下,对准处于 OFF 状态,位置发生错误时,实际的压力波形和基 准波形的位置对不上,发生错误。波峰对准的位置通常是右侧 40%,伺服驱动压着机的 情况下,设定在左侧 70%可能比较合适。波峰对准的设定变更相关,请参照「3.2.4.参数 画面(Log On)」。

波形的左半部分会左右偏移

原因5:压力波形不稳定,每次形状都不相同,识别出的是其他地方的压力波形。

主波形前方有干扰波形,但是干 扰波形低于触发水准,正常读取 后面产生的主波形。

主波形前方有较大的干扰波形, 此干扰波形高于触发水准,被认 为是主波形而被误读。

教示后,即便使用相同的模具、端子、电线生产,根据压着机和模具的状态,主波形的 前后可能会产生如上图所示的干扰波形。干扰波形的原因从机械原因到电子原因等有各 种可能。在此情况下,在自动触发确认画面中,设定合适的触发水准,或者使用接近 开关,输入外部触发信号。外部触发器的安装相关,请参照「CFM-SOL mini设置专用 说明书」。

其他,重新设置公差号码,确认端子·电线的组合、压着高度是否正确等方法也可能 有效。

5.6. 端子压着后,无法取得压力波形 压着良品后压力波形无法取得(CFM-SOL mini 无反应),可能是以下原因。

原因1:自动触发的触发水准设定错误。

触发水准过高,压力波形无法检出。请通过主机或 PC 软件将触发水准调低。 使用外部触发装置时,请确认外部触发装置的安装位置和配线。

原因2:传感器安装位置或输出自身有问题。

自动触发确认画面后,压力波形仍无法取得时,请确认传感器的安装位置和螺栓的固定(请参考「CFM-SOL mini设置专用说明书」)。

5.7. 打开电源开关, CFM-SOL mini 不启动 请确认 AC 电源适配器的插头,主机以及接口的电线是否接好。 电源打开后,开关上部的 LED 灯会亮起。

- 5.8. 与 PC 无法通信 USB 端口可能发生暂时失效的情况。请从 PC 上拔下 USB 电线,重启 PC 软件 Pro-Lite, 再次连接通信。
- 5.9. 发生电子干扰,压力波形异常 压着机的机身漏电等会产生电子干扰,工厂的生产中常常受到电子干扰。电子干扰较 大时,压力波形上会出现锯齿,压力波形前后也会出现锯齿。CFM-SOL mini 根据以往 的经验,设计上增强了抗电子干扰能力。同时为了避免出现问题,客户操作现场也请 时刻注意接地。另外,请将 CFM-SOL mini 的底部的 FG 端子与接地端子相连接。
- 5.10. 端子未打上的不良无法检出 端子未打上(只压着了电线)的不良无法检出时,压力过小未达到触发水准,所以识 别不出压力波形。请调整触发水准到合适的数值。不过,触发水准过低的话,稍微一 点振动就会被误识别,主机判定不良。

6. 质量保证

质保期限为产品采购后一年以内。

质保期限内在正常使用状况下发生故障,我司提供免费修理服务。经我司确认,故障由 客户方面的原因引起的,我司质保期限内提供有偿修理服务。

例如:

- ·产品错误使用,或客户自行修理和改造导致的故障
- ·地震、水灾、雷击及其它自然灾害或公共灾害,异常电流 · 电压导致的故障
- •摔落等,产品不当使用产生的故障

质保期限以外的产品,我司原则上提供有偿修理。

トルーソルテック株式会社 350 -1133 埼玉県川越市砂 TEL 049-242-9184 FAX 049-242-3190 URL http://www.truesoltec.co.jp/ E-mail info@truesoltec.co.jp